Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chaos ; 33(1): 013124, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2222110

ABSTRACT

The accumulation of susceptible populations for respiratory infectious diseases (RIDs) when COVID-19-targeted non-pharmaceutical interventions (NPIs) were in place might pose a greater risk of future RID outbreaks. We examined the timing and magnitude of RID resurgence after lifting COVID-19-targeted NPIs and assessed the burdens on the health system. We proposed the Threshold-based Control Method (TCM) to identify data-driven solutions to maintain the resilience of the health system by re-introducing NPIs when the number of severe infections reaches a threshold. There will be outbreaks of all RIDs with staggered peak times after lifting COVID-19-targeted NPIs. Such a large-scale resurgence of RID patients will impose a significant risk of overwhelming the health system. With a strict NPI strategy, a TCM-initiated threshold of 600 severe infections can ensure a sufficient supply of hospital beds for all hospitalized severely infected patients. The proposed TCM identifies effective dynamic NPIs, which facilitate future NPI relaxation policymaking.


Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , Hong Kong/epidemiology , COVID-19/epidemiology , Pandemics , Disease Outbreaks
2.
Lancet Infect Dis ; 22(10): 1484-1492, 2022 10.
Article in English | MEDLINE | ID: covidwho-2036636

ABSTRACT

BACKGROUND: China has low seasonal influenza vaccination rates among priority populations. In this study, we aimed to evaluate a pay-it-forward strategy to increase influenza vaccine uptake in rural, suburban, and urban settings in China. METHODS: We performed a quasi-experimental pragmatic trial to examine the effectiveness of a pay-it-forward intervention (a free influenza vaccine and an opportunity to donate financially to support vaccination of other individuals) to increase influenza vaccine uptake compared with standard-of-care user-paid vaccination among children (aged between 6 months and 8 years) and older people (≥60 years) in China. Recruitment took place in the standard-of-care group until the expected sample size was reached and then in the pay-it-forward group in primary care clinics from a rural site (Yangshan), a suburban site (Zengcheng), and an urban site (Tianhe). Participants were introduced to the influenza vaccine by project staff using a pamphlet about influenza vaccination and were either asked to pay out-of-pocket at the standard market price (US$8·5-23·2; standard-of-care group) or to donate any amount anonymously (pay-it-forward group). Participants had to be eligible to receive an influenza vaccine and to have not received an influenza vaccine in the past year. The primary outcome was vaccine uptake. Secondary outcomes were vaccine confidence and costs (from the health-care provider perspective). Regression methods compared influenza vaccine uptake and vaccine confidence between the two groups. This trial is registered with ChiCTR, ChiCTR2000040048. FINDINGS: From Sept 21, 2020, to March 3, 2021, 300 enrolees were recruited from patients visiting three primary care clinics. 55 (37%) of 150 people in the standard-of-care group (40 [53%] of 75 children and 15 [20%] of 75 older adults) and 111 (74%) of 150 in the pay-it-forward group (66 [88%] of 75 children and 45 [60%] of 75 older adults) received an influenza vaccine. People in the pay-it-forward group were more likely to receive an influenza vaccine compared with those in the standard-of-care group (adjusted odds ratio [aOR] 6·7 [95% CI 2·7-16·6] among children and 5·0 [2·3-10·8] among older adults). People in the pay-it-forward group had greater confidence in vaccine safety (aOR 2·2 [95% CI 1·2-3·9]), importance (3·1 [1·6-5·9]), and effectiveness (3·1 [1·7-5·7]). In the pay-it-forward group, 107 (96%) of 111 participants donated money for subsequent vaccinations. The pay-it-forward group had a lower economic cost (calculated as the cost without subtraction of donations) per person vaccinated (US$45·60) than did the standard-of-care group ($64·67). INTERPRETATION: The pay-it-forward intervention seemed to be effective in improving influenza vaccine uptake and community engagement. Our data have implications for prosocial interventions to enhance influenza vaccine uptake in countries where influenza vaccines are available for a fee. FUNDING: Bill & Melinda Gates Foundation and the UK National Institute for Health Research.


Subject(s)
Influenza Vaccines , Influenza, Human , Aged , Child , China , Humans , Infant , Influenza, Human/prevention & control , Odds Ratio , Vaccination
3.
Front Immunol ; 13: 864838, 2022.
Article in English | MEDLINE | ID: covidwho-1924099

ABSTRACT

Introduction: During the COVID-19 pandemic, people living with HIV (PLWH) were considered to be at risk of worse COVID-19 outcomes once infected. However, the existing evidence is inconsistent. This systematic review and meta-analysis aimed to compare the risk of SARS-CoV-2 infection, severe COVID-19 symptoms, and mortality among PLWH and patients without HIV. Method: The articles included studies published in PubMed, Medline, Embase, and Cochrane between December 1, 2019, and December 1, 2021. We included the original studies published in English focusing on observational studies assessing the risk of SARS-CoV-2 infection, severe COVID-19 symptoms, and mortality among PLWH. Four independent reviewers extracted data. STrengthening the Reporting of OBservational studies in Epidemiology-Modified (STROBE-M) checklist was used for quality assessment. For the results with heterogeneity I2 >75%, a random-effects model was employed. Otherwise, a fixed-effects model was used. The risk of SARS-CoV-2 infection, severe COVID-19 symptoms, and mortality were compared with and without HIV. Results: We included a total of 32 studies and 71,779,737 study samples, of whom 797,564 (1.11%) were PLWH. Compared with COVID-19 patients without HIV infection, PLWH had comparable risk of SARS-CoV-2 infection (adjusted Risk Ratio=1.07, 95% CI: 0.53-2.16, I2 = 96%, study n=6, n=20,199,805) and risk of developing severe COVID-19 symptoms (aRR=1.06, 95% CI: 0.97-1.16, I2 = 75%, n=10, n=2,243,370). PLWH, if infected with SARS-CoV-2, were found to have an increased risk of mortality compared with people without HIV (aRR=1.30, 95% CI: 1.09-1.56, I2 = 76%, study n=16, n=71,032,659). This finding was consistent across different subgroup analyses. Conclusion: PLWH are at increased risk of COVID-19 related mortality once infected. The local health system should, on the one hand, strengthen COVID-19 prevention and clinical management among PLWH to avoid infection and, on the other hand, sustain the HIV care continuum for PLWH for HIV management.


Subject(s)
COVID-19 , HIV Infections , HIV Seropositivity , HIV-1 , HIV Infections/drug therapy , Humans , Pandemics , SARS-CoV-2
4.
Front Public Health ; 10: 864197, 2022.
Article in English | MEDLINE | ID: covidwho-1877515

ABSTRACT

Objective: To explore the current knowledge and application of vital sign zero and the identify-isolate-inform (3I) system among healthcare workers in China in order to provide a reference for future improvement of healthcare workers' awareness of personal protection and prevention and control measures of infectious diseases. Methods: The questionnaire was used to investigate the basic information of health care workers, their knowledge and application of Vital sign zero and the 3I system. A total of 602 forms of health care workers from tertiary hospitals were randomly collected and included for analysis. Results: The survey showed that 45.30% and 57.30% of the healthcare workers from Chinese tertiary hospitals know about vital sign zero and 3I system while 51.80% and 57.30% of them applied these measures in their clinical practices. Logistics regression analysis results showed that healthcare workers aged 35 years old and below were less aware of vital sign zero than those above 50 years old (OR = 0.405, 95% CI: 0.174-0.942, P = 0.036). Compared with those in Northwest China, healthcare workers who worked in East China (OR = 0.147, 95% CI: 0.031-0.702, P = 0.016), Central China (OR = 0.085, 95% CI: 0.018-0.403, P = 0.002), Southwest China (OR = 0.083, 95% CI: 0.014-0.48, P = 0.006) and North China (OR = 0.201, 95% CI: 0.042-0.966, P = 0.045) were less aware of vital sign zero while the healthcare workers in Northeast China (OR=9.714, 95% CI: 1.091-86.521, P = 0.042), East China (OR = 18.049, 95% CI: 2.258-144.259, P = 0.006), Central China (OR = 25.560, 95% CI: 3.210-203.502, P = 0.002), South China (OR = 11.141, 95% CI: 1.395-88.947, P = 0.023), Southwest China (OR = 23.200, 95% CI: 2.524-213.286, P = 0.005) and North China (OR = 14.078, 95% CI: 1.756-112.895, P = 0.013) had a better understanding of the 3I system than those in Northwest China. Healthcare workers with more than 20 years of working experience showed less knowledge of the 3I system than those with less than 5 years of working experience (OR = 0.409, 95% CI: 0.215-0.77, P = 0.006). Conclusion: The current levels of knowledge and application of vital sign zero and the 3I system in the healthcare workers of Chinese tertiary hospitals need to be improved. The concept of vital sign zero should be incorporated into the prevention triage system of infectious diseases.


Subject(s)
Communicable Diseases , Health Personnel , Adult , Health Knowledge, Attitudes, Practice , Humans , Middle Aged , Tertiary Care Centers , Vital Signs
5.
PLoS Med ; 19(2): e1003928, 2022 02.
Article in English | MEDLINE | ID: covidwho-1686091

ABSTRACT

BACKGROUND: Digital network-based methods may enhance peer distribution of HIV self-testing (HIVST) kits, but interventions that can optimize this approach are needed. We aimed to assess whether monetary incentives and peer referral could improve a secondary distribution program for HIVST among men who have sex with men (MSM) in China. METHODS AND FINDINGS: Between October 21, 2019 and September 14, 2020, a 3-arm randomized controlled, single-blinded trial was conducted online among 309 individuals (defined as index participants) who were assigned male at birth, aged 18 years or older, ever had male-to-male sex, willing to order HIVST kits online, and consented to take surveys online. We randomly assigned index participants into one of the 3 arms: (1) standard secondary distribution (control) group (n = 102); (2) secondary distribution with monetary incentives (SD-M) group (n = 103); and (3) secondary distribution with monetary incentives plus peer referral (SD-M-PR) group (n = 104). Index participants in 3 groups were encouraged to order HIVST kits online and distribute to members within their social networks. Members who received kits directly from index participants or through peer referral links from index MSM were defined as alters. Index participants in the 2 intervention groups could receive a fixed incentive ($3 USD) online for the verified test result uploaded to the digital platform by each unique alter. Index participants in the SD-M-PR group could additionally have a personalized peer referral link for alters to order kits online. Both index participants and alters needed to pay a refundable deposit ($15 USD) for ordering a kit. All index participants were assigned an online 3-month follow-up survey after ordering kits. The primary outcomes were the mean number of alters motivated by index participants in each arm and the mean number of newly tested alters motivated by index participants in each arm. These were assessed using zero-inflated negative binomial regression to determine the group differences in the mean number of alters and the mean number of newly tested alters motivated by index participants. Analyses were performed on an intention-to-treat basis. We also conducted an economic evaluation using microcosting from a health provider perspective with a 3-month time horizon. The mean number of unique tested alters motivated by index participants was 0.57 ± 0.96 (mean ± standard deviation [SD]) in the control group, compared with 0.98 ± 1.38 in the SD-M group (mean difference [MD] = 0.41),and 1.78 ± 2.05 in the SD-M-PR group (MD = 1.21). The mean number of newly tested alters motivated by index participants was 0.16 ± 0.39 (mean ± SD) in the control group, compared with 0.41 ± 0.73 in the SD-M group (MD = 0.25) and 0.57 ± 0.91 in the SD-M-PR group (MD = 0.41), respectively. Results indicated that index participants in intervention arms were more likely to motivate unique tested alters (control versus SD-M: incidence rate ratio [IRR = 2.98, 95% CI = 1.82 to 4.89, p-value < 0.001; control versus SD-M-PR: IRR = 3.26, 95% CI = 2.29 to 4.63, p-value < 0.001) and newly tested alters (control versus SD-M: IRR = 4.22, 95% CI = 1.93 to 9.23, p-value < 0.001; control versus SD-M-PR: IRR = 3.49, 95% CI = 1.92 to 6.37, p-value < 0.001) to conduct HIVST. The proportion of newly tested testers among alters was 28% in the control group, 42% in the SD-M group, and 32% in the SD-M-PR group. A total of 18 testers (3 index participants and 15 alters) tested as HIV positive, and the HIV reactive rates for alters were similar between the 3 groups. The total costs were $19,485.97 for 794 testers, including 450 index participants and 344 alter testers. Overall, the average cost per tester was $24.54, and the average cost per alter tester was $56.65. Monetary incentives alone (SD-M group) were more cost-effective than monetary incentives with peer referral (SD-M-PR group) on average in terms of alters tested and newly tested alters, despite SD-M-PR having larger effects. Compared to the control group, the cost for one more alter tester in the SD-M group was $14.90 and $16.61 in the SD-M-PR group. For newly tested alters, the cost of one more alter in the SD-M group was $24.65 and $49.07 in the SD-M-PR group. No study-related adverse events were reported during the study. Limitations include the digital network approach might neglect individuals who lack internet access. CONCLUSIONS: Monetary incentives alone and the combined intervention of monetary incentives and peer referral can promote the secondary distribution of HIVST among MSM. Monetary incentives can also expand HIV testing by encouraging first-time testing through secondary distribution by MSM. This social network-based digital approach can be expanded to other public health research, especially in the era of the Coronavirus Disease 2019 (COVID-19). TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR) ChiCTR1900025433.


Subject(s)
HIV Infections/diagnosis , HIV Testing/instrumentation , Homosexuality, Male , Reimbursement, Incentive , Self-Testing , Sexual and Gender Minorities , Adult , China , Costs and Cost Analysis , HIV Testing/economics , HIV Testing/methods , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL